Relative Abundance of Integral Plasma Membrane Proteins in Arabidopsis Leaf and Root Tissue Determined by Metabolic Labeling and Mass Spectrometry

نویسندگان

  • Katja Bernfur
  • Olaf Larsson
  • Christer Larsson
  • Niklas Gustavsson
چکیده

Metabolic labeling of proteins with a stable isotope ((15)N) in intact Arabidopsis plants was used for accurate determination by mass spectrometry of differences in protein abundance between plasma membranes isolated from leaves and roots. In total, 703 proteins were identified, of which 188 were predicted to be integral membrane proteins. Major classes were transporters, receptors, proteins involved in membrane trafficking and cell wall-related proteins. Forty-one of the integral proteins, including nine of the 13 isoforms of the PIP (plasma membrane intrinsic protein) aquaporin subfamily, could be identified by peptides unique to these proteins, which made it possible to determine their relative abundance in leaf and root tissue. In addition, peptides shared between isoforms gave information on the proportions of these isoforms. A comparison between our data for protein levels and corresponding data for mRNA levels in the widely used database Genevestigator showed an agreement for only about two thirds of the proteins. By contrast, localization data available in the literature for 21 of the 41 proteins show a much better agreement with our data, in particular data based on immunostaining of proteins and GUS-staining of promoter activity. Thus, although mRNA levels may provide a useful approximation for protein levels, detection and quantification of isoform-specific peptides by proteomics should generate the most reliable data for the proteome.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases

The hydrophobic proteins of plant plasma membrane still remain largely unknown.  For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...

متن کامل

Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling.

In this study, S. cerevisiae crude membrane fractions were prepared using the acid-labile detergent RapiGest from cells grown under rich and minimal media conditions using 14N and 15N ammonium sulfate as the sole nitrogen source. Four independent MudPIT analyses of 1:1 mixtures of sample were prepared and analyzed via quantitative multidimensional protein identification technology on a two-dime...

متن کامل

Enrichment and preparation of plasma membrane proteins from Arabidopsis thaliana for global proteomic analysis using liquid chromatography-tandem mass spectrometry.

The plasma membrane proteins are critical components in cellular control and differentiation and thus are of special interest to those studying signal transduction mechanisms in all organisms. When conducting proteomic studies on membrane components of cells and tissues, the complexity is not simply confined to the large number of proteins present in the sample but also to the highly hydrophobi...

متن کامل

A quantitative analysis of Arabidopsis plasma membrane using trypsin-catalyzed (18)O labeling.

Typical mass spectrometry-based protein lists from purified fractions are confounded by the absence of tools for evaluating contaminants. In this report, we compare the results of a standard survey experiment using an ion trap mass spectrometer with those obtained using dual isotope labeling and a Q-TOF mass spectrometer to quantify the degree of enrichment of proteins in purified subcellular f...

متن کامل

Arabidopsis plasma membrane proteomics identifies components of transport, signal transduction and membrane trafficking.

In order to identify integral proteins and peripheral proteins associated with the plasma membrane, highly purified Arabidopsis plasma membranes from green tissue (leaves and petioles) were analyzed by mass spectrometry. Plasma membranes were isolated by aqueous two-phase partitioning, which yields plasma membrane vesicles with a cytoplasmic-side-in orientation and with a purity of 95%. These v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013